
Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

1September 1989 Revision date: June 1993

DESCRIPTION
The 83C751/87C751 Microcontroller offers the advantages of the
80C51 architecture in a small package and at a low cost. It combines
the benefits of a high-performance microcontroller with on-board
hardware supporting the Inter-Integrated Circuit (I2C) bus interface.

The I2C bus, developed and patented by Philips, allows integrated
circuits to communicate directly with each other via a simple
bidirectional 2-wire bus. The comprehensive family of CMOS and
bipolar ICs incorporating the on-chip I2C interface offers many
advantages to designers of digital control for industrial, consumer and
telecommunications equipment. A typical system configuration is
shown in Figure 1.

MICROCOMPUTER
A

MICROCOMPUTER
B

A/D
CONVERTER

GATE ARRAY LCD DRIVER

STATIC RAM
OR EEPROM

SDA

SCL

SU00359

Figure 1. Typical I 2C Bus Configuration

Interfacing the devices in an I2C based system is very simple because
they connect directly to the two bus lines: a serial data line (SDA) and
a serial clock line (SCL). System design can rapidly progress from
block diagram to final schematic, as there is no need to design bus
interfaces, and functional blocks on a block diagram correspond to
actual ICs. A prototype system or a final product version can easily be
modified or upgraded by ‘clipping’ or ‘unclipping’ ICs to or from the
bus. The simplicity of designing with the I2C bus does not reduce its
effectiveness; it is a reliable, multimaster bus with integrated
addressing and data-transfer protocols (see Figure 2). In addition, the
I2C-bus compatible ICs provide cost reduction benefits to equipment
manufacturers, some of which are smaller IC packages and a
minimization of PCB traces and glue logic.

The availability of microcontrollers like the 83C751, with on-board I2C
interface, is a very powerful tool for system designers. The integrated
protocols allow systems to be completely software defined. Software
development time of different products can be reduced by assembling
a library of reusable software modules. In addition, the multimaster
capability allows rapid testing and alignment of end-products via
external connections to an assembly-line computer.

The mask programmable 83C751 and its EPROM version, the
87C751, can operate as a master or a slave device on the I2C small
area network. In addition to the efficient interface to the dedicated
function ICs in the I2C family, the on-board interface facilities I/O and
RAM expansion, access to EEPROM and processor-to-processor
communications.

The multimaster capability of the I2C is very important but many
designs do not require it. For many systems, it is sufficient that all
communications between devices are initiated by a single, master
processor. In this application note, use of the 8XC751 as an I2C bus
master is described. Some of the technical features of the bus and the
83C751’s special hardware associated with the I2C are discussed.
Also included is a software example demonstrating I2C single master
communications. Note that the sample routines are quite general, and
therefore may be transferred easily to many applications.

The discussion of the I2C bus characteristics in this application note is
by no means complete. Additional information for the I2C bus and the
S83C751 Microcontroller can be found in the Microcontroller Users’
Guide.

THE I2C BUS
The two lines of the I2C-bus are a serial data line (SDA) and a serial
clock line (SCL). Both lines are connected to a positive supply via a
pull-up resistor, and remain HIGH when the bus is not busy. Each
device is recognized by a unique address—whether it is a
microcomputer, LCD driver, memory or keyboard interface—and can
operate as either a transmitter or receiver, depending on the function
of the device. A device generating a message or data is a transmitter,
and a device receiving the message or data is a receiver. Obviously, a
passive function like an LCD driver could only be a receiver, while a
microcontroller or a memory can both transmit and receive data.

Masters and Slaves
When a data transfer takes place on the bus, a device can either be a
master or a slave. The device which initiates the transfer, and
generates the clock signals for this transfer, is the master. At that time
any device addressed is considered a slave. It is important to note
that a master could either be a transmitter or a receiver; a master
microcontroller may send data to a RAM acting as a transmitter, and
then interrogate the RAM for its contents acting as a receiver—in both
cases performing as the master initiating the transfer. In the same
manner, a slave could be both a receiver and a transmitter.

The I2C is a multimaster bus. It is possible to have, in one system,
more than one device capable of initiating transfers and controlling the
bus (Figure 2). A microcontroller may act as a master for one transfer,
and then be the slave for another transfer, initiated by another
processor on the network. The master/slave relationships on the bus
are not permanent, and may change on each transfer.

MASTER
TRANSMITTER/

RECEIVER

SLAVE
RECEIVER

SLAVE
TRANSMITTER/

RECEIVER

MASTER
MASTER

TRANSMITTER/
RECEIVER

SCL

SDA

TRANSMITTER

SU00360

Figure 2. I 2C Bus Connection

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 2

As more than one master may be connected to the bus, it is possible
that two devices will try to initiate a transfer at the same time.
Obviously, in order to eliminate bus collisions and communications
chaos, an arbitration procedure is necessary. The I2C design has an
inherent arbitration and clock synchronization procedure relying on
the wired-AND connection of the devices on the bus. In a typical
multimaster system, a microcontroller program should allow it to
gracefully switch between master and slave modes and preserve data
integrity upon loss of arbitration. In this note, a simple case is
presented describing the S83C751 operating as a single master on
the bus.

Data Transfers
One data bit is transferred during each clock pulse (see Figure 3). The
data on the SDA line must remain stable during the HIGH period of
the clock pulse in order to be valid. Changes in the data line at this
time will be interpreted as control signals. A HIGH-to-LOW transition
of the data line (SDA) while the clock signal (SCL) is HIGH indicates a
Start condition, and a LOW-to-HIGH transition of the SDA while SCL
is HIGH defines a Stop condition (see Figure 4). The bus is
considered to be busy after the Start condition and free again at a
certain time interval after the Stop condition. The Start and Stop
conditions are always generated by the master.

The number of data bytes transferred between the Start and Stop
condition from transmitter to receiver is not limited. Each byte, which
must be eight bits long, is transferred serially with the most significant
bit first, and is followed by an acknowledge bit. (see Figure 5). The
clock pulse related to the acknowledge bit is generated by the
master. The device that acknowledges has to pull down the SDA line
during the acknowledge clock pulse, while the transmitting device
releases the SDA line (HIGH) during this pulse (see Figure 6).

SDA

SCL

DATA LINE
STABLE:

DATA VALID

CHANGE
OF DATA

ALLOWED

SU00361

Figure 3. Bit Transfer on the I 2C Bus

SDA

SCL

S P

SDA

SCL

START
CONDITION

STOP
CONDITION

SU00362

Figure 4. Start and Stop Conditions

START
CONDITION

S

STOP
CONDITION

P

SDA

SCL

MSB

1 2 7 8 9 1 2 3 – 8 9

ACK ACK

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

BYTE COMPLETE,
INTERRUPT WITHIN

RECEIVER

CLOCK LINE HELD LOW
WHILE INTERRUPT

IS SERVICED

SU00363

Figure 5. Data Transfer on the I 2C Bus

START
CONDITION

S 1 2 7 8 9

DATA OUTPUT BY
TRANSMITTERR

DATA OUTPUT
BY RECEIVER

SCL FROM MASTER

TRANSMITTER STAYS OFF OF THE BUS
DURING THE ACKNOWLEDGE CLOCK

ACKNOWLEDGEMENT
SIGNAL FROM RECEIVER

SU00364

Figure 6. Acknowledge on the I 2C Bus

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 3

A slave receiver must generate an acknowledge after the reception of
each byte, and a master must generate one after the reception of
each byte clocked out of the slave transmitter. If a receiving device
cannot receive the data byte immediately, it can force the transmitter
into a wait state by holding the clock line (SCL) LOW. When
designing a system, it is necessary to take into account cases when
acknowledge is not received. This happens, for example, when the
addressed device is busy in a real time operation. In such a case the
master, after an appropriate “time-out”, should abort the transfer by
generating a Stop condition, allowing other transfers to take place.
These “other transfers” could be initiated by other masters in a
multimaster system, or by this same master.

There are two exceptions to the “acknowledge after every byte” rule.
The first occurs when a master is a receiver: it must signal an end of
data to the transmitter by NOT signalling an acknowledge on the last
byte that has been clocked out of the slave. The acknowledge related
clock, generated by the master should still take place, but the SDA
line will not be pulled down. In order to indicate that this is an active
and intentional lack of acknowledgement, we shall term this special
condition as a “negative acknowledge”.

The second exception is that a slave will send a negative
acknowledge when it can no longer accept additional data bytes. This
occurs after an attempted transfer that cannot be accepted.

The bus design includes special provisions for interfacing to
microprocessors which implement all of the I2C communications in
software only—it is called “Slow Mode”. When all of the devices on
the network have built-in I2C hardware support, the Slow Mode is
irrelevant.

Addressing and Transfer Formats
Each device on the bus has its own unique address. Before any data
is transmitted on the bus, the master transmits on the bus the address
of the slave to be accessed for this transaction. A well-behaved slave
with a matching address, if it exists on the network, should of course
acknowledge the master’s addressing. The addressing is done by the
first byte transmitted by the master after the Start condition.

An address on the network is seven bits long, appearing as the most
significant bits of the address byte. The last bit is a direction (R/W) bit.
A zero indicates that the master is transmitting (WRITE) and a one
indicates that the master requests data (READ). A complete data

transfer, comprised of an address byte indicating a WRITE and two
data bytes is shown in Figure 7.

When an address is sent, each device in the system compares the
first seven bits after the Start with its own address. If there is a match,
the device will consider itself addressed by the master, and will send
an acknowledge. The device could also determine if in this transaction
it is assigned the role of a slave receiver or slave transmitter,
depending on the R/W bit.

Each node of the I2C network has a unique seven bit address. The
address of a microcontroller is of course fully programmable, while
peripheral devices usually have fixed and programmable address
portions. In addition to the “standard” addressing discussed here, the
I2C bus protocol allows for “general call” addressing and interfacing
to CBUS devices.

When the master is communicating with one device only, data
transfers follow the format of Figure 7, where the R/W bit could
indicate either direction. After completing the transfer and issuing a
Stop condition, if a master would like to address some other device on
the network, it could of course start another transaction, issuing a new
Start.

Another way for a master to communicate with several different
devices would be by using a “repeated start”. After the last byte of the
transaction was transferred, including its acknowledge (or negative
acknowledge), the master issues another Start, followed by address
byte and data—without effecting a Stop. The master may
communicate with a number of different devices, combining READS
and WRITES. After the last transfer takes place, the master issues a
Stop and releases the bus. Possible data formats are demonstrated
in Figure 8. Note that the repeated start allows for both change of a
slave and a change of direction, without releasing the bus. We shall
see later on that the change of direction feature can come in handy
even when dealing with a single device.

In a single master system, the repeated start mechanism may be
more efficient than terminating each transfer with a Stop and starting
again. In a multimaster environment, the determination of which
format is more efficient could be more complicated, as when a master
is using repeated starts it occupies the bus for a long time and thus
preventing other devices from initiating transfers.

START
CONDITION

ADDRESS R/W ACK DATA DATAACK ACK

CONDITION
STOP

PS

SDA

SCL

1–7 8 9 1–7 8 9 1–7 8 9

SU00365

Figure 7. A Complete Data Transfer on the I 2C-Bus

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 4

MASTER WRITE:

S SLAVE ADDRESS W A DATA A DATA A P

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

MASTER READ:

S SLAVE ADDRESS R A DATA A DATA NA P

S SLAVE ADDRESS

COMBINED FORMATS:

R/W A ADATA S SLAVE ADDRESS R/W A DATA A P

DIRECTION OF TRANSFER MAY
CHANGE AT THIS POINTS = START

STOP
WRITE
READ
READ OR WRITE
ACKNOWLEDGE
NEGATIVE ACKNOWLEDGE

P =
W =
R =
R/W =
A =
NA =

(n BYTES +
ACKNOWLEDGE)

(n BYTES +
ACKNOWLEDGE)

SU00366

Figure 8. I 2C Data Formats

S SLAVE ADDRESS 0 A WORD ADDRESS A DATA A P

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

R/W
n BYTES

AUTO-INCREMENT
MEMORY WORD ADDRESS

MASTER TRANSMITS TO SLAVE RECEIVER

(a)

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

ACKNOWLEDGE
FROM SLAVE

AUTO-INCREMENT
MEMORY WORD ADDRESS

S SLAVE ADDRESS 0 A WORD ADDRESS A 1 A

R/W

S SLAVE ADDRESS

A DATA 1 PDATA

NO ACKNOWLEDGE
FROM MASTER

LAST BYTEMASTER TRANSMITTER BECOMES
MASTER RECEIVER AND SLAVE

RECEIVER BECOMES SLAVE
TRANSMITTER AUTO-INCREMENT

MEMORY WORD ADDRESS

n BYTES

(b)

MASTER READS AFTER SETTING WORD ADDRESS
(WRITE WORD ADDRESS; READ DATA)

SU00367

Figure 9. I 2C Sub-Address Usage

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 5

Use of Sub-Addresses
For some ICs on the I2C bus, the device address alone is not
sufficient for effective communications, and a mechanism for
addressing the internals of the device is necessary. A typical example
when we want to access a specific word inside the device is
addressing memories, or a sequence of memory locations starting at
a specific internal address.

A typical I2C memory device like the PCF8570 RAM contains a built-in
word address register that is incremented automatically after each
data byte which is a read or written data byte. When a master
communicates with the PCF8570 it must send a sub-address in the
byte following the slave address byte. This sub-address is the internal
address of the word the master wants to access for a single byte
transfer, or the beginning of a sequence of locations for a multi-byte
transfer. A sub-address is an 8-bit byte, unlike the device address, it
does not contain a direction (R/W) bit, and like any byte transferred on
the bus it must be followed by an acknowledge.

A memory write cycle is shown in Figure 9(a). The Start is followed
by a slave byte with the direction bit set to WRITE, a sub-address
byte, a number of data bytes and a Stop signal. The sub-address is
loaded into the word address memory, and the data bytes which
follow will be written one after the other starting with the sub-address
location, as the register is incremented automatically.

The memory read cycle (see Figure 9(b)) commences in a similar
manner, with the master sending a slave address with the direction bit
set to WRITE with a following sub-address. Then, in order to reverse
the direction of the transfer, the master issues a repeated Start
followed again by the memory device address, but this time with the
direction bit set to READ. The data bytes starting at the internal
sub-address will be clocked out of the device, each followed by a
master-generated acknowledge. The last byte of the read cycle will be
followed by a negative acknowledge, signalling the end of transfer.
The cycle is terminated by a Stop signal.

8XC751 I2C HARDWARE
The on-chip I2C bus hardware support of the 8XC751 allows
operation on the bus at full speed, and simplifies the software needed
for effective communications on the network. The hardware activates
and monitors the SDA and SCL lines, performs the necessary
arbitration and framing errors checks, and takes care of clock
stretching and synchronization. The hardware support includes a bus
time-out timer, called Timer I. The hardware is synchronized to the
software either through polled loops or interrupts.

Two of the port 0 pins are multi-functional. When the I2C is active, the
pin associated with P0.0 functions as SCL, and the pin associated
with P0.1 functions as SDA. These pins have an open drain output.

Two of the five 8XC751 interrupt sources may be used for I2C
support. The I2C interrupt is enabled by the EI2 flag of the interrupt
enable register, and its service routine should start at address 023h.
An I2C interrupt is usually requested (if enabled) when a rising edge of
SCL indicates a new data bit on the bus, or a special condition occurs:
Start, Stop or arbitration loss. The interrupt is induced by the ATN
flag—see below for the conditions for setting this flag. The Timer I
overflow interrupt is enabled by the ETI flag, and the service routine
starts at 01Bh.

The I2C port is controlled through three special function registers: I2C
Control (I2CON), I2C Configuration (I2CFG), and I2C Data (I2DAT).
The register addresses are shown in Table 1.

Although the following discussion of the hardware and register details
is not complete, it should give a better understanding of the
programming examples.

Timer I
In I2C applications, Timer I is dedicated to the port timing generation
and bus monitoring. In non-I2C applications, it is available for use as a
fixed time base.

In its port timing generation function, Timer I is used to generate SCL,
the I2C clock. Timer I is clocked once per machine cycle (osc/12), so
that the toggle rate of SCL will be some multiple of that rate. Because
the 83C751 can be run over a wide range of oscillator frequencies, it
is necessary to adjust SCL for the part’s oscillator frequency. This
allows the I2C bus to be used at its highest transfer rates independent
of the oscillator frequency. SCL is adjusted by writing to two bits (CT0
and CT1) in the I2CFG special function register (see Table 2). The
inverse of the values in CT0 and CT1 are loaded into the least
significant two bit locations of Timer I every time the fourth bit of the
timer is toggled. (A value is actually loaded into the least significant
three bits, the third bit being 0 unless both CT0 and CT1 are
programmed high and in that case the third bit is 1). SCL is then
toggled every time the fourth bit of Timer I is toggled. For example: if
CT1 = 0 and CT0 = 1 then the least significant three bits of Timer I
would be preloaded with 2 (010 binary). Timer I would then count 3, 4,
5, 6, 7, 8 (6 counts or machine cycles). On 8, the fourth bit of Timer I
will toggle, SCL will toggle and the 3 least significant bits will again be
preloaded with the value 2 (010).

Table 1. I2C Special Function Register Addresses

REGISTER BIT ADDRESS

Name Symbol Address MSB LSB

I2C Control I2CON 98 9F 9E 9D 9C 9B 9A 99 98

I2C Data I2DAT 99 – – – – – – – –

I2C Configuration I2CFG D8 DF DE DD DC DB DA D9 D8

Table 2. CT0, CT1 Timer I Settings
CT1 Values CT0 Values Timer I Counts Oscillator Freq (MHz)

1 0 7 16

0 1 6 15, 14, 13

0 0 5 12, 11

1 1 4 10 or less
Timer I counts = fOSC (MHz) x 0.39 (rounded up to next integer).

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 6

For the bus monitoring function, Timer I is used as a “watchdog timer”
for bus hang-ups. It creates an interrupt when the SCL line stays in
one state for an extended period of time while the bus is active
(between a Start condition and a following Stop condition). SCL “stuck
low” indicates a faulty master or slave. SCL “stuck high” may mean a
faulty device, or that noise induced unto the I2C caused all masters to
withdraw from the I2C arbitration.

The time-out interval of Timer I is fixed (cannot be set): it carries out
and interrupts (if enabled) when about 1024 machine cycles have
elapsed since a change on SCL within a frame. In other words,
whenever I2C is active and Timer I is enabled, the falling edge of SCL
will reset Timer I. If SCL is not toggled low for 1024 machine cycles,
Timer I will overflow and cause an interrupt. (Note: we wrote “about
1024 machine cycles” although for the sake of accuracy—this number
is affected by the setting of the CT0 and CT1 bits mentioned above
and may vary by up to three machine cycles) The exact number of
cycles for a time-out is not critical; what is important is that it indicates
SCL is stuck.

In addition to the interrupt, upon Timer I overflow the I2C port
hardware is reset. This is useful for multiple master systems in
situations where a bus fault might cause the bus to hang-up due to a
lack of software response. When this happens, SCL will be released,
and I2C operation between other devices can continue.

I2CON Register
The I2C control register (I2CON) can be written to (see Figure 10).
When writing to the I2CON register, one should use bit masks as
demonstrated in the example program. Trying to clear or set the bits in
the register using the bit addressing capabilities of the 8XC751 may
lead to undesirable results. The reason is that a command like CLR
reads the register, sets the bit and writes it back, and the write-back
may affect other bits.

I2CFG Register
The configuration register (I2CFG) is a read/write register (see
Figure 11).

I2DAT Register
The I2C data register (I2DAT) is a read/write register, where the MSB
represents the data received or data to be sent. The other seven bits
are read as 0 (see Figure 12).

Transmit Active State
The transmit active state—Xmit Active—is an internal state in the I2C
interface that is affected by the I2C registers as explained above. The
I2C interface will only drive the SDA line low when Xmit Active is set.
Xmit Active is set by writing the I2DAT register, or by writing I2CON
with XSTR = 1 or XSTP = 1. The ARL bit will be set to 1 only when
Xmit Active is set—in such a case Xmit Active will be automatically
reset upon arbitration loss. Xmit Active is cleared by writing 1 to CXA
at I2CON register or by reading the I2DAT register.

MASTERRDAT ATN DRDY ARL STR STP –––

RDAT Received DATa bit. The value of SDA latched by the rising edge of SCL. Its contents is identical to RDAT in the
I2DAT register. Reading the received data here allows doing so without clearing DRDY and releasing SCL.

ATN An “ATteNtion” flag, set when any one of DRDY, ARL, STR or STP is set. This flag allows a single bit testing for
terminating “wait loops”, indicating a meaningful event on the bus. This flag also activates the I2C interrupt request.

DRDY Data ReaDY flag. Set by a rising edge of SCL when I2C is active, except at an idle slave. This flag is cleared by
reading or writing the I2DAT register, or by writing a 1 to CDR (at the same address, when I2CON is written).

ARL ARbitration Loss flag. Indicates that this device lost arbitration while trying to take control of the bus.

STR STaRt flag. Set when a Start condition is detected, except at an idle slave.

STP SToP flag. Set when a Stop condition is detected, except at an idle slave.

MASTER This flag is set when the controller is a bus master (or a potential master, prior to arbitration).

I2CON READ

XSTRCXA IDLE CDR CARL CSTR CSTP XSTPI2CON WRITE

CXA “Clear Xmit Active”. Writing a 1 to CXA clears the internal transmit-active state.

IDLE Setting this bit will cause a slave to enter idle mode and ignore the I2C bus until the next Start is detected. If the
software sets the MASTRQ flag, the device may stop idling by turning into a master.

CDR Clear Data Ready. Clears the DRDY flag.

CARL Clear Arbitration Lost. Clears the ARL flag.

CSTR Clear STaRt. Clears the STR flag.

CSTP Clear STop. Clears the STP flag.

XSTR “Xmit repeated STaRt”. Writing a 1 to this bit causes the hardware to issue a Repeated Start signal. A side effect
will be setting the internal Xmit Active state. This should be used only when the device is a master.

XSTP “Xmit SToP”. Issues a Stop condition. The Xmit active state is set.
SU00368

Figure 10. I2CON Register

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 7

CT1SLAVEN MASTRQ CLRTI TIRUN — — CT0

SLAVEN Writing a 1 to this flag enables the slave functions of the I2C interface.

MASTRQ Request control of the bus as a master.

CLRTI Clear the Timer I interrupt flag. This bit is always read as 0.

TIRUN Writing a 1 will let Timer I run. When I2C is active, it will run only inside frames, and will be cleared by SCL
transitions, Start and Stop. Writing a 0 will stop and clear the timer.

CT1, CT0 These bits should be programmed according to the frequency of the crystal oscillator used in the hardware. They
determine the minimum high and low times for SCL, and are used to optimized performance at different oscillator
speeds.

SU00369

Figure 11. I2CFG Register

—RDAT — — — — — —

RDAT Received DATa bit, captured from SDA every rising edge of SCL. Reading I2CAT clears DRDY and the
Xmit Active state. If it is necessary to read the data without affecting the flags, it can be read out of RDAT
in the I2CON register.

I2DAT READ

—XDAT — — — — — —I2DAT WRITE

XDAT Xmit DATa bit. Writing XDAT determines the data for the next bit to be transmitted on the I2C bus.
Writing I2DAT also clears DRDY and sets the Xmit Active state.

SU00370

Figure 12. I2DAT Register

PROGRAMMING EXAMPLE
The listing demonstrates communications routines for the 8XC751 as
an I2C bus master in a single-master system.

The single-master system is less complicated than a multimaster
environment. The programmer does not have to worry about switching
between master and slave roles, or the consequences of an
arbitration loss.

The I2C interrupt is not used, and therefore disabled. There is no need
for frame Start interrupts, as this processor is the only bus master
and all data transfers are initiated by it when the appropriate routines
are called by the application. No one else generates frame Starts
which could be an interrupt source in a multimaster system. Within the
frames we monitor bus activity with a wait-loop which polls the ATN
flag. As we expect the bus to operate in its full-speed mode, we can
assume that only a small amount of time will be wasted in those
loops, and the use of interrupts would be less efficient.

The 8XC751 has single-bit I2C hardware interface, where the
registers may directly affect the levels on the bus and the software
interacting with the register takes part in the protocol implementation.
The hardware and the low-level routines dealing with the registers are
tightly coupled. Therefore, one should take extra care if trying to
modify these lower level routines.

The beginning of the program, at address 0, contains the reset vector,
where the microcontroller begins executing code after a hardware
reset. In this case, the code simply jumps to the main part of the
program, which begins at the label ‘Reset’ near the end of the listing.

The main program is a simple demonstration of the I2C routines which
comprise the balance of the listing. It first enables the Timer I
interrupt, and sets up some sample data to be transmitted. Beginning
at the label MainLoop, the program then proceeds to transmit one
byte of data to a slave device at address 48 hexadecimal, using the
routine titled ‘SendData’. In our demonstration hardware, this address
corresponds to an 8-bit I/O port that drives eight monitor LEDs. The
program then reads back one byte of data from the same port using
the routine ‘RcvData’. The SendData and RcvData routines can send
or receive multiple bytes of data, the number of which is determined
by the variable ‘ByteCnt’.

Upon return from both SendData and RcvData, the program checks
the system flag named ‘Retry’ to see if the transfer was completed
correctly. If not, it loops back and attempts the same transfer again.

Next, the program sends four bytes of data to a 256-byte EEPROM
device, an 8-pin part called the PCF8582. The routine ‘SendSub’ is
used for this purpose. The EEPROM was located at address A0
hexadecimal on our board. This device uses the sub-addressing
feature to select a starting location to address in the EEPROM array.
When data is written to the EEPROM, the address is automatically
incremented so that the data bytes are stored in consecutive
locations.

Finally the program reads back four bytes of data from the EEPROM
using the routine ‘RcvSub’. Calls to SendSub and RcvSub should also
be followed by a test of the Retry flag to insure that all went according
to plan.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 8

This entire process is repeated indefinitely by jumping back to
MainLoop.

Back at the beginning of the program, the next location after the reset
vector is the Timer I interrupt service routine. The microcontroller will
go to address 1B hexadecimal if Timer I overflows. This routine stops
the timer, clears the timer interrupt, clears the pending interrupt so
that other interrupts will be enabled, restores the stack pointer, and
jumps to the ‘Recover’ routine to try to correct whatever stopped the
I2C bus and allowed Timer I to overflow.

Next in the listing come the main I2C service routines. These are the
routines SendData, RcvData, SendSub, and RcvSub that were called
from the main program. Both of the send routines use the data area
labeled ‘XmtDat’ as the transmit data buffer. In this sample program,
four bytes were reserved for this area, but it could be larger or
smaller depending on the application. The two receive routines use
another four byte buffer labeled ‘RcvDat’ to store received data. All of
these routines use the variables ‘SlvAdr’ and ‘ByteCnt’ to determine
the slave address and the number of bytes to be sent or received,
respectively. The SendSub and RcvSub routines use the variable
‘SubAdr’ as the sub-address to send to the slave device.

Following the main I2C service routines in the listing are the
subroutines that are called by the main routines to deal intimately
with the I2C hardware.

The ‘SendAddr’ subroutine requests mastership of the I2C bus and
calls the routine ‘XmitAddr’ to complete sending the slave address.
The bulk of the XmitAddr routine is shared with the ‘XmitByte’
subroutine which sends data bytes on the I2C bus. XmitByte is also
used to send I2C sub-addresses. Both subroutines check for an
acknowledge from the slave device after every byte is sent on the I2C
bus.

The next subroutine ‘RDAck’ calls the ‘RcvByte’ routine to read in a
byte of data. It then sends an acknowledge to the slave device.
RDAck is used to receive all data except for the last byte of a receive
data frame, where the acknowledge is omitted by the bus master. The
RcvByte subroutine is called directly for the last byte of a frame.

The ‘SendStop’ subroutine causes a stop condition on the I2C, thus
ending a frame. The ‘RepStart’ subroutine sends a repeated start
condition on the I2C bus, to allow the master to start a new frame
without first having to send an intervening stop.

The lower level subroutines deal directly with the hardware. The tight
coupling between hardware and software is best demonstrated by the

following explanations, relating to two cases in which the code is not
self evident.

Sending the Address
When sending the address byte in the Send Addr subroutine, the first
bit is written to I2DAT prior to the loop where the other seven bits are
sent (SendAd2). The reason is that we need to clear the Start
condition in order to release the SCL line, and this is done explicitly by
the subsequent command. When SCL is released, the correct bit
(MSB of address) must already be in I2DAT.

Capturing the Received Data
Typically, a program receiving data waits in a loop for ATN, and when
detected, checks DRDY. If DRDY = 1 then there was a rising SCL,
and the new data can be read from RDAT in I2CON or I2DAT.
Reading or writing I2DAT clears DRDY, thus releasing SCL.

When reading the last bit in a byte, it should be read from I2CON, and
not I2DAT (see the end of the RcvByte routine). This way the Data
Ready (DRDY) flag is not cleared, and the low period on SCL is
stretched. The reason for doing so is that upon reception of the last bit
of a received byte the master must react with an acknowledge. In
order to ensure that we “wait” with the acknowledge clock (release of
SCL) until the acknowledge level is issued on SDA, the last bit is read
out of I2CON and not I2DAT. SCL is stretched low until the
acknowledge level is written into I2DAT by the software.

Bus Faults and Other Exceptions
Bus exceptions are detected either by Timer I time-out, or “illegal”
logic states tested for and detected by the software. Upon Timer I
time-out, a bus recovery is attempted by the Recover routine. The
final section of the listing is this ‘Recover’ routine. Its job is to try to
restore control of the I2C bus to the main program. First, the
subroutine ‘FixBus’ is called. It checks to see if only the SDA line is
‘stuck’, and if so, tries to correct it by sending some extra clocks on
the SCL line, and forcing a stop condition on the bus. If this does not
work, another subroutine ’BusReset’ is called. This generally happens
when a severe bus error occurs, such as a shorted clock line. The
philosophy used in this code is that the only chance of recovering
from a severe error is to cause a reset of the I1C hardware by
deliberately forcing Timer I to time out. This method allows recovery
from a temporary short or other serious condition on the I2C bus.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 9

I2CAPP 83C751 Single Master I2C Routines 09/07/89

 1
 2 ;***
 3 ;
 4 ; Sample I2C Single Master Routines for the 83C751
 5
 6 ;***
 7
 8 $TITLE(83C751 Single Master I2C Routines)
 9 $DATE(09/07/89)
 10 $MOD751
 11 $DEBUG
 12
 13
 14 ; Value definitions.
 15
 0002 16 CTVAL EQU 02h ;CT1, CT0 bit values for I2C.
 17
 18
 19 ; Masks for I2CFG bits.
 20
 0010 21 BTIR EQU 10h ;Mask for TIRUN bit.
 0040 22 BMRQ EQU 40h ;Mask for MASTRQ bit.
 23
 24
 25 ; Masks for I2CON bits.
 26
 0080 27 BCXA EQU 80h ;Mask for CXA bit.
 0040 28 BIDLE EQU 40h ;Mask for IDLE bit.
 0020 29 BCDR EQU 20h ;Mask for CDR bit.
 0010 30 BCARL EQU 10h ;Mask for CARL bit.
 0008 31 BCSTR EQU 08h ;Mask for CSTR bit.
 0004 32 BCSTP EQU 04h ;Mask for CSTP bit.
 0002 33 BXSTR EQU 02h ;Mask for XSTR bit.
 0001 34 BXSTP EQU 01h ;Mask for XSTP bit.
 35
 36
 37 ; RAM locations used by I2C routines.
 38
 0021 39 BitCnt DATA 21h ;I2C bit counter.
 0022 40 ByteCnt DATA 22h
 0023 41 SlvAdr DATA 23h ;Address of active slave.
 0024 42 SubAdr DATA 24h
 43
 0025 44 RcvDat DATA 25h ;I2C receive data buffer (4 bytes).
 45 ; addresses 25h through 28h.
 46
 0029 47 XmtDat DATA 29h ;I2C transmit data buffer (4 bytes).
 48 ; addresses 29h through 2Ch.
 49
 002D 50 StackSave DATA 2Dh ;Saves stack addr for bus recovery.
 51
 0020 52 Flags DATA 20h ;I2C software status flags.
 0000 53 NoAck BIT Flags.0 ;Indicates missing acknowledge.
 0001 54 Fault BIT Flags.1 ;Indicates a bus fault of some kind.
 0002 55 Retry BIT Flags.2 ;Indicates that last I2C transmission
 56 ; failed and should be repeated.
 57
 0080 58 SCL BIT P0.0 ;Port bit for I2C serial clock line.
 0081 59 SDA BIT P0.1 ;Port bit for I2C serial data line.
 60

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 10

 61 ;**
 62 ; Begin Code
 63 ;**
 64
 65 ; Reset and interrupt vectors.
 66
0000 21E1 67 AJMP Reset ;Reset vector at address 0.
 68
 69
 70 ; A timer I timeout usually indicates a ’hung’ bus.
 71
001B 72 ORG 1Bh ;Timer I (I2C timeout)
 ; interrupt.
001B D2DD 73 TimerI: SETB CLRTI ;Clear timer I interrupt.
001D C2DC 74 CLR TIRUN
001F 1126 75 ACALL ClrInt ;Clear interrupt pending.
0021 852D81 76 MOV SP,StackSave ;Restore stack for return
 ; to main.
0024 218A 77 AJMP Recover ;Attempt bus recovery.
0026 32 78 ClrInt: RETI
 79
 80
 81 ;***
 82 ; Main Transmit and Receive Routines
 83 ;***
 84
 85 ; Send data byte(s) to slave.
 86 ; Enter with slave address in SlvAdr, data in XmtDat buffer,
 87 ; # of data bytes to send in ByteCnt.
 88
0027 C200 89 SendData: CLR NoAck ;Clear error flags.
0029 C201 90 CLR Fault
002B C202 91 CLR Retry
002D 85812D 92 MOV StackSave,SP ;Save stack address
 for bus fault.
0030 E523 93 MOV A,SlvAdr ;Get slave address.
0032 310C 94 ACALL SendAddr ;Get bus and send slave addr.
0034 200012 95 JB NoAck,SDEX ;Check for missing
 ; acknowledge.
0037 200112 96 JB Fault,SDatErr ;Check for bus fault.
003A 7829 97 MOV R0,#XmtDat ;Set start of transmit
 ; buffer.
 98
003C E6 99 SDLoop: MOV A,@R0 ;Get data for slave.
003D 08 100 INC R0
003E 3125 101 ACALL XmitByte ;Send data to slave.
0040 200006 102 JB NoAck,SDEX ;Check for missing
 ; acknowledge.
0043 200106 103 JB Fault,SDatErr ;Check for bus fault.
0046 D522F3 104 DJNZ ByteCnt,SDLoop
 105
0049 3166 106 SDEX: ACALL SendStop ;Send an I2C stop.
004B 22 107 RET
 108
 109
 110 ; Handle a transmit bus fault.
 111
004C 218A 112 SDatErr: AJMP Recover ;Attempt bus recovery.
 113
 114
 115 ; Receive data byte(s) from slave.
 116 ; Enter with slave address in SlvAdr,
 ; # of data bytes requested in ByteCnt.
 117 ; Data returned in RcvDat buffer.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 11

 118
004E C200 119 RcvData: CLR NoAck ;Clear error flags.
0050 C201 120 CLR Fault
0052 C202 121 CLR Retry
0054 85812D 122 MOV StackSave,SP ;Save stack address
 ; for bus fault.
0057 E523 123 MOV A,SlvAdr ;Get slave address.
0059 D2E0 124 SETB ACC.0 ;Aet bus read bit.
005B 310C 125 ACALL SendAddr ;Send slave address.
005D 200023 126 JB NoAck,RDEX ;Check for missing
 ; acknowledge.
0060 200123 127 JB Fault,RDatErr ;Check for bus fault.
 128
0063 7825 129 MOV R0,#RcvDat ;Set start of receive
 ; buffer.
0065 D52202 130 DJNZ ByteCnt,RDLoop ;Check for count = 1
 ; byte only.
0068 800A 131 SJMP RDLast
 132
006A 3143 133 RDLoop: ACALL RDAck ;Get data and send
 ; an acknowledge.
006C 200117 134 JB Fault,RDatErr ;Check for bus fault.
006F F6 135 MOV @R0,A ;Save data.
0070 08 136 INC R0
0071 D522F6 137 DJNZ ByteCnt,RDLoop ;Repeat until last
 ; byte.
 138
0074 314F 139 RDLast: ACALL RcvByte ;Get last data byte
 ; from slave.
0076 20010D 140 JB Fault,RDatErr ;Check for bus
 ; fault.
0079 F6 141 MOV @R0,A ;Save data.
 142
007A 759980 143 MOV I2DAT,#80h ;Send negative
 ; acknowledge.
007D 309EFD 144 JNB ATN,$;Wait for NAK sent.
0080 309D03 145 JNB DRDY,RDatErr ;Check for bus
 ; fault.
 146
0083 3166 147 RDEX: ACALL SendStop ;Send an I2C bus
 ; stop.
0085 22 148 RET
 149
 150
 151 ; Handle a receive bus fault.
 152
0086 218A 153 RDatErr: AJMP Recover ;Attempt bus recovery.
 154
 155
 156 ; Send data byte(s) to slave with subaddress.
 157 ; Enter with slave address in ACC, subaddress in
 ; SubAdr, # of bytes to send in ByteCnt,
 158 ; data in XmtDat buffer.
 159
0088 C200 160 SendSub: CLR NoAck ;Clear error flags.
008A C201 161 CLR Fault
008C C202 162 CLR Retry
008E 85812D 163 MOV StackSave,SP ;Save stack address
 ; for bus fault.
0091 E523 164 MOV A,SlvAdr ;Get slave address.
0093 310C 165 ACALL SendAddr ;Get bus and send
 ; slave address.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 12

0095 20001C 166 JB NoAck,SSEX ;Check for missing
 ; acknowledge.
0098 20011C 167 JB Fault,SSubErr ; Check for bus
 ; fault.
 168
009B E524 169 MOV A,SubAdr ;Get slave subaddress.
009D 3125 170 ACALL XmitByte ;Send subaddress.
009F 200012 171 JB NoAck,SSEX ;Check for missing
 ; acknowledge.
00A2 200112 172 JB Fault,SSubErr ;Check for bus fault.
00A5 7829 173 MOV R0,#XmtDat ;Set start of
 ; transmit buffer.
 174
00A7 E6 175 SSLoop: MOV A,@R0 ;Get data for slave.
00A8 08 176 INC R0
00A9 3125 177 ACALL XmitByte ;Send data to slave.
00AB 200006 178 JB NoAck,SSEX ;Check for missing
 ; acknowledge.
00AE 200106 179 JB Fault,SSubErr ;Check for bus fault.
00B1 D522F3 180 DJNZ ByteCnt,SSLoop
 181
00B4 3166 182 SSEX: ACALL SendStop ;Send an I2C stop.
00B6 22 183 RET
 184
 185
 186 ; Handle a transmit bus fault.
 187
00B7 218A 188 SSubErr: AJMP Recover ;Attempt bus recovery.
 189
 190
 191 ; Receive data byte(s) from slave with subaddress.
 192 ; Enter with slave address in SlvAdr, subaddress in SubAdr,
 ; # of data bytes requested in ByteCnt.
 193 ; Data returned in RcvDat buffer.
 194
00B9 C200 195 RcvSub: CLR NoAck ;Clear error flags.
00BB C201 196 CLR Fault
00BD C202 197 CLR Retry
00BF 85812D 198 MOV StackSave,SP ;Save stack address
 ; for bus fault.
00C2 E523 199 MOV A,SlvAdr ;Get slave address.
00C4 310C 200 ACALL SendAddr ;Send slave address.
00C6 20003E 201 JB NoAck,RSEX ;Check for missing
 ; acknowledge.
00C9 20013E 202 JB Fault,RSubErr ;Check for bus fault.
 203
00CC E524 204 MOV A,SubAdr ;Get slave subaddress.
00CE 3125 205 ACALL XmitByte ;Send subaddress.
00D0 200034 206 JB NoAck,RSEX ;Check for missing
 ; acknowledge.
00D3 200134 207 JB Fault,RSubErr ;Check for bus fault.
 208
00D6 317A 209 ACALL RepStart ;Send repeated start.
00D8 20012F 210 JB Fault,RSubErr ;Check for bus fault.
00DB E523 211 MOV A,SlvAdr ;Get slave address.
00DD D2E0 212 SETB ACC.0 ;Set bus read bit.
00DF 3115 213 ACALL SendAd2 ;Send slave address.
00E1 200023 214 JB NoAck,RSEX ;Check for missing
 ; acknowledge.
00E4 200123 215 JB Fault,RSubErr ;Check for bus fault.
 216
00E7 7825 217 MOV R0,#RcvDat ;Set start of
 ; receive buffer.
00E9 D52202 218 DJNZ ByteCnt,RSLoop ;Check for count = 1
 ; byte only.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 13

00EC 800A 219 SJMP RSLast
 220
00EE 3143 221 RSLoop: ACALL RDAck ;Get data and send
 ; an acknowledge.
00F0 200117 222 JB Fault,RSubErr ;Check for bus fault.
00F3 F6 223 MOV @R0,A ;Save data.
00F4 08 224 INC R0
00F5 D522F6 225 DJNZ ByteCnt,RSLoop ;Repeat until last byte.
 226
00F8 314F 227 RSLast: ACALL RcvByte ;Get last data byte
 ; from slave.
00FA 20010D 228 JB Fault,RSubErr ;Check for bus fault.
00FD F6 229 MOV @R0,A ;Save data.
 230
00FE 759980 231 MOV I2DAT,#80h ;Send negative
 ; acknowledge.
0101 309EFD 232 JNB ATN,$;Wait for NAK sent.
0104 309D03 233 JNB DRDY,RSubErr ;Check for bus fault.
 234
0107 3166 235 RSEX: ACALL SendStop ;Send an I2C bus stop.
0109 22 236 RET
 237
 238
 239 ; Handle a receive bus fault.
 240
010A 218A 241 RSubErr: AJMP Recover ;Attempt bus recovery.
 242
 243
 244 ;**
 245 ; Subroutines
 246 ;**
 247
 248 ; Send address byte.
 249 ; Enter with address in ACC.
 250
010C 75D852 251 SendAddr: MOV I2CFG,#BMRQ+BTIR+CTVAL ;Request I2C bus.
010F 309EFD 252 JNB ATN,$;Wait for bus
 ; granted.
0112 309908 253 JNB Master,SAErr ;Should have
 ; become the bus
 ; master.
0115 F599 254 SendAd2: MOV I2DAT,A ;Send first bit,
 ; clears DRDY.
0117 75981C 255 MOV I2CON,#BCARL+BCSTR+BCSTP ;Clear start,
 ; releases SCL.
011A 3120 256 ACALL XmitAddr ;Finish sending
 ; address.

011C 22 257 RET
 258
011D D201 259 SAErr: SETB Fault ;Return bus fault
 ; status.
011F 22 260 RET
 261
 262
 263 ; Byte transmit routine.
 264 ; Enter with data in ACC.
 265 ; XmitByte : transmits 8 bits.
 266 ; XmitAddr : transmits 7 bits (for address only).
 267
0120 752108 268 XmitAddr: MOV BitCnt,#8 ;Set 7 bits of
 ; address count.
0123 8005 269 SJMP XmBit2
 270

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 14

0125 752108 271 XmitByte: MOV BitCnt,#8 ;Set 8 bits of data
 ; count.
0128 F599 272 XmBit: MOV I2DAT,A ;Send this bit.
012A 23 273 XmBit2: RL A ;Get next bit.
012B 309EFD 274 JNB ATN,$;Wait for bit sent.
012E 309D0F 275 JNB DRDY,XMErr ;Should be data ready.
0131 D521F4 276 DJNZ BitCnt,XmBit ;Repeat until all bits sent.
0134 7598A0 277 MOV I2CON,#BCDR+BCXA ;Switch to
 ; receive mode.
0137 309EFD 278 JNB ATN,$;Wait for acknowledge
 ; bit.
013A 309F02 279 JNB RDAT,XMBX ;Was there an ack?
013D D200 280 SETB NoAck ;Return no acknowledge
 ; status.
013F 22 281 XMBX: RET
 282
0140 D201 283 XMErr: SETB Fault ;Return bus fault
 ; status.
0142 22 284 RET
 285
 286
 287 ; Byte receive routines.
 288 ; RDAck : receives a byte of data, then sends
 ; an acknowledge.
 289 ; RcvByte : receives a byte of data.
 290 ; Data returned in ACC.
 291
0143 314F 292 RDAck: ACALL RcvByte ;Receive a data byte.
0145 759900 293 MOV I2DAT,#0 ;Send receive
 ; acknowledge.
0148 309EFD 294 JNB ATN,$;Wait for acknowledge
 ; sent.
014B 309D15 295 JNB DRDY,RdErr ;Check for bus fault.
014E 22 296 RET
 297
014F 752108 298 RcvByte: MOV BitCnt,#8 ;Set bit count.
0152 E4 299 CLR A ;Init received byte
 ; to 0.
0153 4599 300 RBit: ORL A,I2DAT ;Get bit, clear ATN.
0155 23 301 RL A ;Shift data.
0156 309EFD 302 JNB ATN,$;Wait for next bit.
0159 309D07 303 JNB DRDY,RdErr ;Should be data ready.
015C D521F4 304 DJNZ BitCnt,RBit ;Repeat until 7 bits
 ; are in.
015F A29F 305 MOV C,RDAT ;Get last bit, don’t
 ; clear ATN.
0161 33 306 RLC A ;Form full data byte.
0162 22 307 RET
 308
0163 D201 309 RdErr: SETB Fault ;Return bus fault status.
0165 22 310 RET
 311
 312
 313 ; I2C stop routine.
 314
0166 C2DE 315 SendStop: CLR MASTRQ ;Release bus
 ; mastership.
0168 759821 316 MOV I2CON,#BCDR+BXSTP ;Generate a bus stop.
016B 309EFD 317 JNB ATN,$;Wait for atn.
016E 759820 318 MOV I2CON,#BCDR ;Clear data ready.
0171 309EFD 319 JNB ATN,$;Wait for stop sent.
0174 759894 320 MOV I2CON,#BCARL+BCSTP+BCXA ;Clear I2C bus.
0177 C2DC 321 CLR TIRUN ;Stop timer I.
0179 22 322 RET
 323

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 15

 324
 325 ; I2C repeated start routine.
 326 ; Enter with address in ACC.
 327
017A 759822 328 RepStart: MOV I2CON,#BCDR+BXSTR ;Send repeated start.
017D 309EFD 329 JNB ATN,$;Wait for ATN.
0180 759820 330 MOV I2CON,#BCDR ;Clear data ready.
0183 309EFD 331 JNB ATN,$;Wait for repeated
 ; start sent.
0189 22 333 RET
 334
 335
 336 ; Bus fault recovery routine.
 337
018A 31A4 338 Recover: ACALL FixBus ;See if bus is dead or
 ; can be ’fixed’.
018C 400D 339 JC BusReset ;If not ’fixed’, try
 ; extreme measures.
018E D202 340 SETB Retry ;If bus OK, return to
 ; main routine.
0190 C201 341 CLR Fault
0192 C200 342 CLR NoAck
0194 D2DD 343 SETB CLRTI
0196 D2DC 344 SETB TIRUN ;Enable timer I.
0198 D2AB 345 SETB ETI ;Turn on timer I
 ; interrupts.
019A 22 346 RET
 347
 348 ;This routine tries a more extreme method of bus recovery.
 349 ; This is used if SCL or SDA are stuck and cannot
 ; otherwise be freed.
 350 ; (will return to the Recover routine when Timer I times out)
 351
019B C2DE 352 BusReset: CLR MASTRQ ;Release bus.
019D 7598BC 353 MOV I2CON,#0BCh ;Clear all I2C flags.
01A0 D2DC 354 SETB TIRUN
01A2 80FE 355 SJMP $;Wait for timer I
 ; timeout (this will re-
 356 ; set the I2C hardware).
 357
 358
 359 ; This routine attempts to regain control of the I2C
 ; bus after a bus fault.

 360 ; Returns carry clear if successful, carry set if failed.
 361
01A4 C2DE 362 FixBus: CLR MastRQ ;Turn off I2C functions.
01A6 D3 363 SETB C
01A7 D280 364 SETB SCL ;Insure I/O port is not
 ; locking I2C.
01A9 D281 365 SETB SDA
01AB 308029 366 JNB SCL,FixBusEx ;If SCL is low, bus
 ; cannot be ’fixed’.
01AE 208113 367 JB SDA,RStop ;If SCL & SDA are high,
 ; force a stop.
01B1 752109 368 MOV BitCnt,#9 ;Set max # of tries to
 ; clear bus.
01B4 C280 369 ChekLoop: CLR SCL ;Force an I2C clock.
01B6 31D8 370 ACALL SDelay
01B8 208109 371 JB SDA,RStop ;Did it work?
01BB D280 372 SETB SCL
01BD 31D8 373 ACALL SDelay
01BF D521F2 374 DJNZ BitCnt,ChekLoop ;Repeat clocks until
 ; either SDA clears or
 375 ; we run out of tries.

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 16

01C2 8013 376 SJMP FixBusEx ;Failed to fix bus by
 ; this method.
 377
01C4 C281 378 RStop: CLR SDA ;Try forcing a stop
 ; since SCL & SDA
01C6 31D8 379 ACALL SDelay ; are both high.
01C8 D280 380 SETB SCL
01CA 31D8 381 ACALL SDelay
01CC D281 382 SETB SDA
01CE 31D8 383 ACALL SDelay
01D0 308004 384 JNB SCL,FixBusEx ;Are SCL & SDA still
 ; high? If so, assume bus
01D3 308101 385 JNB SDA,FixBusEx ; is now OK, and return
01D6 C3 386 CLR C ; with carry cleared.
01D7 22 387 FixBusEx: RET
 388
 389
 390 ; Short delay routine (10 machine cycles).
 391
01D8 00 392 SDelay: NOP
01D9 00 393 NOP
01DA 00 394 NOP
01DB 00 395 NOP
01DC 00 396 NOP
01DD 00 397 NOP
01DE 00 398 NOP
01DF 00 399 NOP
01E0 22 400 RET
 401
 402 ;**
 404 ; Main Program
 405 ;**
 406
01E1 758107 407 Reset: MOV SP,#07h ;Set stack location.
01E4 D2AB 408 SETB ETI ;Enable timer I interrupts.
01E6 D2AF 409 SETB EA ;Enable global interrupts.
01E8 75290B 410 MOV XmtDat,#11 ;Set up transmit data.
01EB 752A16 411 MOV XmtDat+1,#22 ;Set up transmit data.
01EE 752B2C 412 MOV XmtDat+2,#44 ;Set up transmit data.
01F1 752C58 413 MOV XmtDat+3,#88 ;Set up transmit data.
01F4 752500 414 MOV RcvDat,#0 ;Clear receive data.
01F7 752600 415 MOV RcvDat+1,#0 ;Clear receive data.
01FA 752700 416 MOV RcvDat+2,#0 ;Clear receive data.
01FD 752800 417 MOV RcvDat+3,#0 ;Clear receive data.
 418
0200 752348 419 MainLoop: MOV SlvAdr,#48h ;Set slave address
 ; (8–bit I/O port).
0203 752201 420 MOV ByteCnt,#1 ;Set up byte count.
0206 1127 421 ACALL SendData ;Send data to slave.
0208 2002F5 422 JB Retry,MainLoop
 423
020B 752201 424 ML2: MOV ByteCnt,#1 ;Set up byte count.
020E 114E 425 ACALL RcvData ;Read data from slave.
0210 2002F8 426 JB Retry,ML2
 427
0213 7523A0 428 SL1: MOV SlvAdr,#0A0h ;Set slave address
 ; (RAM chip).
0216 752400 429 MOV SubAdr,#0h ;Set slave subaddress.
0219 752204 430 MOV ByteCnt,#4 ;Set up byte count.
021C 1188 431 ACALL SendSub
021E 2002F2 432 JB Retry,SL1
 433

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 17

0221 752204 434 SL2: MOV ByteCnt,#4 ;Set up byte count.
0224 11B9 435 ACALL RcvSub
0226 2002F8 436 JB Retry,SL2
 437
0229 0529 438 INC XmtDat
022B 052A 439 INC XmtDat+1
022D 052B 440 INC XmtDat+2
022F 052C 441 INC XmtDat+3
0231 80CD 442 SJMP MainLoop ;Do it all again.
 443
 444 ENDASSEMBLY COMPLETE, 0 ERRORS FOUND

I2CAPP 83C751 Single Master I2C Routines
ACC. D ADDR 00E0H PREDEFINED
ATN. B ADDR 009EH PREDEFINED
BCARL. NUMB 0010H
BCDR NUMB 0020H
BCSTP. NUMB 0004H
BCSTR. NUMB 0008H
BCXA NUMB 0080H
BIDLE. NUMB 0040H NOT USED
BITCNT D ADDR 0021H
BMRQ NUMB 0040H
BTIR NUMB 0010H
BUSRESET C ADDR 019BH
BXSTP. NUMB 0001H
BXSTR. NUMB 0002H
BYTECNT. D ADDR 0022H
CHEKLOOP C ADDR 01B4H
CLRINT C ADDR 0026H
CLRTI. B ADDR 00DDH PREDEFINED
CTVAL. NUMB 0002H
DRDY B ADDR 009DH PREDEFINED
EA B ADDR 00AFH PREDEFINED
ETI. B ADDR 00ABH PREDEFINED
FAULT. B ADDR 0001H
FIXBUS C ADDR 01A4H
FIXBUSEX C ADDR 01D7H
FLAGS. D ADDR 0020H
I2CFG. D ADDR 00D8H PREDEFINED
I2CON. D ADDR 0098H PREDEFINED
I2DAT. D ADDR 0099H PREDEFINED
MAINLOOP C ADDR 0200H
MASTER B ADDR 0099H PREDEFINED
MASTRQ B ADDR 00DEH PREDEFINED
ML2. C ADDR 020BH
NOACK. B ADDR 0000H
P0 D ADDR 0080H PREDEFINED
RBIT C ADDR 0153H
RCVBYTE. C ADDR 014FH
RCVDAT D ADDR 0025H
RCVDATA. C ADDR 004EH
RCVSUB C ADDR 00B9H
RDACK. C ADDR 0143H
RDAT B ADDR 009FH PREDEFINED
RDATERR. C ADDR 0086H
RDERR. C ADDR 0163H
RDEX C ADDR 0083H
RDLAST C ADDR 0074H
RDLOOP C ADDR 006AH
RECOVER. C ADDR 018AH
REPSTART C ADDR 017AH
RESET. C ADDR 01E1H
RETRY. B ADDR 0002H
RSEX C ADDR 0107H

Philips Semiconductors Microcontroller Products Application note

AN422
Using the 8XC751 microcontroller
as an I2C bus master

September 1989 18

RSLAST C ADDR 00F8H
RSLOOP C ADDR 00EEH
RSTOP. C ADDR 01C4H
RSUBERR. C ADDR 010AH
SAERR. C ADDR 011DH
SCL. B ADDR 0080H
SDA. B ADDR 0081H
SDATERR. C ADDR 004CH
SDELAY C ADDR 01D8H
SDEX C ADDR 0049H
SDLOOP C ADDR 003CH
SENDAD2. C ADDR 0115H
SENDADDR C ADDR 010CH
SENDDATA C ADDR 0027H
SENDSTOP C ADDR 0166H
SENDSUB. C ADDR 0088H
SL1. C ADDR 0213H
SL2. C ADDR 0221H
SLVADR D ADDR 0023H
SP D ADDR 0081H PREDEFINED
SSEX C ADDR 00B4H
SSLOOP C ADDR 00A7H
SSUBERR. C ADDR 00B7H
STACKSAVE. D ADDR 002DH
SUBADR D ADDR 0024H
TIMERI C ADDR 001BH NOT USED
TIRUN. B ADDR 00DCH PREDEFINED
XMBIT. C ADDR 0128H
XMBIT2 C ADDR 012AH
XMBX C ADDR 013FH
XMERR. C ADDR 0140H
XMITADDR C ADDR 0120H
XMITBYTE C ADDR 0125H
XMTDAT D ADDR 0029H

	DESCRIPTION
	THE I 2 C BUS
	Masters and Slaves
	Data Transfers
	Addressing and Transfer Formats
	Use of Sub-Addresses

	8XC751 I 2 C HARDWARE
	I2CON Register
	I2CFG Register
	I2DAT Register
	Transmit Active State

	PROGRAMMING EXAMPLE
	Sending the Address
	Capturing the Received Data
	Bus Faults and Other Exceptions

